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A D O U B L E  A P P R O X I M A T I O N  

OF F I N I T E  D E F O R M A T I O N S  OF  A SHELL 

L. G. G o l o v i n a  and L. I. S h k u t i n  UDC 539.3 

A double approximation of the displacement field in the transverse direction is applied to model 
finite deformations of a shell. One (linear) approximation is used to compute the tangential derivatives of 
the field and the other ~quadratic) approximation is used for the normal derivative. As a result, the field 
gradient is approximated by a linear function of the transverse coordinate, and the Green finite strain tensor 
is approximated by a quadratic function of the transverse coordinate. A two-dimensional model of shell 
deformation, 'which is consistent with the double approximation, contains three desired vectors as internal 
kinematic variables. However, only two of the vectors (the coefficients of the linear approximation) are 
parameters of the kinematic boundary conditions. They give six scalar degrees of freedom to a transverse 
fiber of the shell. The model constructed determines all components of the volume finite strain tensor and can 
be recommended for numerical analysis of deformation problems of shells that are nonuniform and layered in 
thickness. 

The theory of shells that is based on a linear approximation of the displacement field along the normal 
coordinate is contradictory. It introduces an irremovable error into the physical (constitutive) equations for 
the material of the shell. The value of this error depends on the degree of anisotropy and inhomogeneity of the 
material. An attempt has been made [1, 2] to reduce the error by means of an additional scalar parameter that 
corrects the linear approximation of the displacement field. The concept of a double approximation realized 
below was developed under the influence of publications [3, 4]. It corrects and generalizes the results of [1, 2]. 

1. D e f o r m a t i o n  of  a Shel l  C o n s i d e r e d  as a C a u c h y  Body .  Let a shell-shaped body in its initial 
(unstressed) state occupy a region (volume) G. The material of the shell is distributed on a basic surface A. 
A curvilinear system of coordinates Q with a local basis a: ,  in which al and a2 are tangential vectors, and 
a3 is a normal unit vector, is related to the basic surface. The position vector g(t i)  of an arbitrary point 
of the shell is given by the equality g = a + t3a3, where a(ti) is the position vector of a point of the basic 
surface. Here and below, the upper-case Latin subscripts take values 1, 2, and 3, and the lower-case subscripts 
take values 1 and 2; the tensor summation rule is used; OI and VI  are the operators of partial and covariant 
differentiation with respect to the coordinate Q; the possible dependence on time is not indicated explicitly. 

The formula 

OIg = gI = aI + t3bi  

introduces the initial basis of the coordinate grid at an arbitrary point of the shell. In accordance with the 
definition of the basis, the equalities ai =- Oia, ai �9 a3 =- O, bi =. Oia3, b i .  a3 = 0, and b3 = 0 are valid. 

The shell surface usually consists of two outer surfaces An and an edge surface A3, which is orthogonal 
to the basic surface along its boundary contour C. The surfaces A and An are given by the equalities t3 = 0 
and t3 = hn so that hi ~< t3 ~< h2 (ht and h2 are functions of the surface point or constant numbers). Each 
surface AN is oriented by the normal unit vector ely. 

The differentials of the volume and surfaces are determined by the equalities dG =_ Jdt3dA, dA = 
adtldt2, dAn = jndA, and dA3 - j3dt3dC, in which aJ(g)  is the Jacobian of the curvilinear system relative 
to the Cartesian system; jN(g E AN) are the metric parameters of the surfaces (jn does not depend on t3). 
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Deformation of the shell transforms the initial position vector into the instantaneous vector g+ = g-t-w, 
where w(g)  is the finite-displacement vector of an arbitrary material point of the shell. The initial basis gi  is 
transformed into the instantaneous basis 

g~" -= a I g  + = g1 + w r ,  w 1  - a l w .  (l.l) 
The vectors wl (g)  form the tensor gradient of the displacement field. 

In the process of deformation, the shell is subjected to external mechanical actions, that  is, surface 
and volume force fields. The volume field of the external forces is given by the density vector f(g) per initial 
unit volume. The surface field is divided into three fields, which are given at the edge and outer surfaces by 
the density vectors f/v(g E AN) per initial unit  area. Deformation of the shell as a Cauchy body generates a 
volume field of internal stresses, which is represented by contravariant Piola vectors zl(g) .  

The balance of the external and internal forces acting on the shell can be expressed by the equation of 
virtual work ("weak" formulation): 

h2 h2 ' 

A h I A C h 1 

Here 5w is the virtual displacement vector; 6w(n ) is its value on the surface An; ~z is the density of the virtual 
strain energy per initial unit  volume determined by any one of the equalities 

~Z --~ Z I "  ~W I ---- Z I J ~ t o I J  ~ Z I J ~ w I j ,  (1.3) 

in which Z I J  and z I J  are components of the symmetric and asymmetric Piola stress tensors: 

Z I z  - z I "  gg+, z I y  =- z I .  a/ ;  (1.4) 

W l l  and W I j  are components of the Green strain gradient and tensor: 

w l J  --  w I ' a j ,  W I j  = g + .  g+ - g I ' g J .  (1.5) 

Variational equation (1.2) must be supplemented by constitutive equations (restrictions) for the 
material. In particular, purely mechanical elastic and elastoplastic deformations of many materials are 
governed by incrementM constitutive relations of the form 

6 Z  I J  = E I J K L S W K L  . (1.6) 

Their coefficients can contain information on the prehistory of loading of the body. 
System (1.I)-(1.6) gives a weak formulation of the finite deformation problem of a shell as a Catchy 

body. 
2. A n  A p p r o x i m a t e  M o d e l  for  Shel l  D e f o r m a t i o n .  In constructing an approximate model for 

finite deformation of a shell, a two-fold approximation of the displacement field is used: 

W ' ~  W (1) ----- U .~U t a V ;  (2.1) 

w ~ w (2) -- u + ~3u3 + (1/2)(t3)2v3, u3 -- v, (2.2) 

where u(a),  v(a) ,  and va(a) are the desired kinematic vectors defined on the basic surface of the shell. 
Approximation (2.1) corresponds to the assumption of straight normals and is used to calculate the virtual 
displacement 

~w _~ ~w (1) = ~u + t a 6 v  (2.3) 

and the derivatives of the vectors 

W i  ~ Oq/W (1) ---- U i  n t- t3Vi,  Ui --  OiU, Vi -- OiV. (2.4) 

Approximation (2.2) admits bending of transverse fibers and is used in computation of the vector 

w3 -~ 0sw(2)  = u3 + t s v s ,  u s  - v .  (2.5) 

422 



Substitution of approximations (2.3)-(2.5) into the equation of virtual 
formulation in the two-dimensional space of the basic surface: 

/ ( p - 5 u  + q .  5 v -  5 Z ) d A  + / ( P a ' 6 u  + q3" 5v)dC = O. 
. 1  

A C 
Here, we introduce the generalized vectors of the external forces, 

h2 h2 h2 
P t 

fJt3dt3,  

hi hi hi 

and the surface density of the virtual strain energy, 

h2 

(5Z - / 6zJdt3 .  

hi 

Use of the first equality from (1.3) leads to the formula 

5Z  = x t �9 5ui  + y I .  5v/, 

in which the vectors 
h2 h2 

x I _  f zIjdt3, y I_  f zIjtadt3 
hi hl 

work (1.2) 

h2 
/ .  

q3 ---- / f3j3t3dt3, 

hi 

leads to its 

(2.6) 

(2.7) 

(2.s) 

(2.9) 

(2.10) 

have the meaning of generalized internal forces: stresses and moments. 
Substitution of (2.9) into (2.6) and integration by parts using equalities (2.4) yields the equation 

[(P3 - e3ixi) " (~u "4- (q3 - e3iyi) �9 6v] dC 

c 

+ / [ ( p  + Vixi) �9 ~u "4- (q -- X 3 + V i y i )  " ~V -- y3.  ~V3] dA = 0. (2.11) 

A 

Since the variations 5u, 5v, and 5v3 are independent, from (2.11) follow the local equilibrium equations 

V i X  i + p = O, V i y  i -- X 3 + q = O, y3 = O, (2.12) 

which are defined on the basic surface and the force boundary conditions 

esi Xi = P3, e3iy i = q3 (2.13) 

on the section of the contour on which the forces are specified. On an attached section, the kinematic vectors 
u and v must be specified. 

System (2.12) of static equations must be supplemented by constitutive relations, for example, of the 
form of (1.6). Then, equalities (2.10) will have the meaning of constitutive equations for generalized internal 
forces. The volume strain tensor must be expressed beforehand in terms of the desired kinematic parameters 
of the basic surface. For this, from (1.1), (2.4), and (2.5), we determine the vectors 

g/+ = a + + t3b +, a?  - aI + ui ,  b?  = bI + vI (2.14) 

and then, from (1.5) we have 

ft3~2Y (2) 2 U I j  - a +.  a + - a l  . a  j ,  W u  = U u  + t 3 V u  + ~ j u ,  (2.15) 
2v,+ =_ b 7  + a7 - b,  - b j  2V,(? -= bt"  - b ,  b +  

The quantities UIj ,  V I j ,  and V/(2) are the two-dimensional parameters of shell deformation, which can be 
expressed, by means of (2.14), in terms of the surface kinematic vectors u1 and vI. 
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A scalar formulation of the resulting relations is realized by means of expansion of all the kinematic 
and force vectors in terms of the initial basis: 

U = u j a  J, v = v j a  J, u I = u l j a  J, v I = o l j a  J, x I = x l J a j ,  

P = PYaJ,  P3 = p J a j ,  y I  = y l J a j  ' q = q g a j ,  q3 = q Jag .  (2.16) 

In particular, the virtual equation (2.6) takes the form 

f (g6us + q J 6 v j ) d C  + f (pJ6uj + q J ~ v j -  x l J 6 u I J - -  y l J 6 v l j ) d m  = 0 (2.17) 
c A 

with the kinematic variables 

u3J =-- v j ,  u i j  = a j  . Oiu, v i j  = a j  . O/v, (2.18) 

and with the static variables x IJ  and y l J ,  which are asymmetric stresses and moments.  From (2..10) follow 
the equalities 

r~IMl.+ (2.19) 1 5  = x TMa~J + Y1 b+ j, y5 = +  MJ, 

which determine the asymmetric  stresses and moments in terms of symmetric stresses and moments, 

h2 h2 

X I J  _ / Z I J J d t 3  ' y I J  =_ / Z I J j t 3 d t 3 ,  

hi hi 

and the kinematic parameters 

h:z 

hi 
(2.2o) 

a+j = a~" �9 a j  = a t j  + Ul j ,  a l j  - a I . a j ,  b-~j =_ b + . a s  = b l j  + v I j ,  b l j  = b ,  . a j .  (2.21) 

Equalities (2.19), together with (1.6), (2.15), (2.20), and (2.21), formulate generalized constitutive relations 
for asymmetric stresses and moments.  

System (2.7), (2.10), (2.12), (2.13), and (2.18) formulates a two-dimensional problem of shell 
deformation, which is consistent with double approximation (2.1) and (2.2) of the displacement field. The 
weak equation (2.6) with (2.9) or its scalar formulation (2.17) are preferable to the local static equations 
(2.12) and (2.13) for numerical analysis. 

As a result of solving the two-dimensional problem, the following kinematic and static variables are 
determined: the vector fields of displacement u l ,  v j ,  and vaj ,  the tensor fields of strains UIj ,  VI j ,  and V/(~ ) 
and of the generalized stresses x 1J and y IJ .  The ult imate goal of the shell deformation problem is to determine 
the volume fields of displacements, strains, and stresses. The displacement and strain fields inside the shell are 
computed by formulas (2.2) and (2.15) and the components of the stress vectors z I are computed by means 
of local constitutive relations of the form (1.6) or others. The stress vector z 3 and its components are found 
by integration of the static Cauchy equation 

03(Jz 3) = -Oi (  J z  i) - J f  (2.22) 

with the already known vectors z i. In the integration of (2.22), the force conditions at one of the outer surfaces 
of the shell are used, and the conditions at the other surface are satisfied owing to the generalized equations 
(2.12). For layered shells, static conditions at the interlayer surfaces must be satisfied. 

The model of finite deformation of a shell with double approximation of the field of finite displacements 
contains a closed formulation of the two-dimensional boundary-value problem, and three-dimensional relations 
for reconstruction of the volume fields of displacements, strains, and stresses. The last equation from 
the generalized static equations (2.12) is absent from the traditional formulation, which uses a linear 
approximation of the displacement field of the shell. This equation, using constitutive relations, makes it 
possible to exclude the displacement vector v3 from the set of unknown kinematic variables. Only two 
displacement vectors (u and v) are the kinematic parameters of the generalized model, since only these 
are the parameters of the kinematic boundary conditions. Their components form six local degrees of freedom 
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of the deformable shell. The resulting generalized model differs from the models given in [1, 2], since it 
introduces the additional kinematic vector v3 instead of the scalar parameter 163, and, correspondingly, the 
model proposed here contains the additional vector equation 3,3 = 0 instead of the scalar equality y33 = 0. 
The greatest difference between the models compared should be expected for shells that are nonuniform and 
layered in thickness. 

The authors express their gratitude to the Krasnoyarsk Regional Scientific Foundation for financial 
support of this work and devote this work to the memory of Gennady Vasil'evich Ivanov, who headed the 
Laboratory of Numerical Methods of the Mechanics of a Deformable Solid Body at the Lavrent'ev Institute 
of Hydrodynamics of the Siberian Division of the Russian Academy of Sciences. 
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